diff --git a/output/02_data_insights.html b/output/02_data_insights.html
index e6ff4e1953f5f58af9c856137c96e172f11b7204..b84ce0cab50befb32494144c3e5d007d6fda6256 100644
--- a/output/02_data_insights.html
+++ b/output/02_data_insights.html
@@ -364,7 +364,6 @@ Prof. Dr. Michael Bücker
 <li><a href="#/data-insights" id="/toc-data-insights"><span class="header-section-number">3.1</span> Data insights</a></li>
 <li><a href="#/data-insights-process" id="/toc-data-insights-process"><span class="header-section-number">3.2</span> Data insights process</a></li>
 <li><a href="#/crisp-dm" id="/toc-crisp-dm"><span class="header-section-number">3.3</span> CRISP-DM</a></li>
-<li><a href="#/exercise" id="/toc-exercise"><span class="header-section-number">3.4</span> Exercise</a></li>
 <li><a href="#/references" id="/toc-references">References</a></li>
 </ul>
 </nav>
@@ -620,27 +619,7 @@ Prof.&nbsp;Dr.&nbsp;Michael Bücker
 <p>The machine learning community is still trying to establish a standard process model for machine learning development. As a result, many machine learning and data science projects are still not well organized. Results are not reproducible. In general, such projects are conducted in an ad-hoc manner. To guide ML practitioners through the development life cycle, the Cross-Industry Standard Process for the development of Machine Learning applications with Quality assurance methodology (CRISP-ML(Q)) was recently proposed.</p>
 </blockquote>
 
-<img data-src="img/crispmlq.jpeg" class="r-stretch quarto-figure-center"><p class="caption">Figure&nbsp;3.3: The CRISP-ML(Q) Lifecycle Process <span class="citation" data-cites="MLOps">(cf. <a href="#/references" role="doc-biblioref" onclick="">Visengeriyeva et al. 2022</a>)</span></p></section></section>
-<section>
-<section id="exercise" class="title-slide slide level2 center" data-background-color="#0014a0" data-number="3.4">
-<h2><span class="header-section-number">3.4</span> Exercise</h2>
-
-</section>
-<section id="exercise-1" class="slide level3" data-number="3.4.1">
-<h3><span class="header-section-number">3.4.1</span> Exercise</h3>
-<div class="callout callout-caution callout-titled callout-style-default">
-<div class="callout-body">
-<div class="callout-title">
-<div class="callout-icon-container">
-<i class="callout-icon"></i>
-</div>
-<p><strong>Exercise</strong></p>
-</div>
-<div class="callout-content">
-<p>Please analyze the following use case</p>
-</div>
-</div>
-</div>
+<img data-src="img/crispmlq.jpeg" class="r-stretch quarto-figure-center"><p class="caption">Figure&nbsp;3.3: The CRISP-ML(Q) Lifecycle Process <span class="citation" data-cites="MLOps">(cf. <a href="#/references" role="doc-biblioref" onclick="">Visengeriyeva et al. 2022</a>)</span></p><p>:::</p>
 </section></section>
 <section id="references" class="title-slide slide level2 unnumbered scrollable smaller">
 <h2>References</h2>